Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107917, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817938

RESUMO

The activation of IKK/NF-κB by genotoxic stress is a crucial process in the DNA damage response. Due to the anti-apoptotic impact of NF-κB, it can affect cell-fate decisions upon DNA damage and therefore interfere with tumor therapy-induced cell death. Here, we developed a dynamical model describing IKK/NF-κB signaling that faithfully reproduces quantitative time course data and enables a detailed analysis of pathway regulation. The approach elucidates a pathway topology with two hubs, where the first integrates signals from two DNA damage sensors and the second forms a coherent feedforward loop. The analyses reveal a critical role of the sensor protein PARP-1 in the pathway regulation. Introducing a method for calculating the impact of changes in individual components on pathway activity in a time-resolved manner, we show how irradiation dose influences pathway activation. Our results give a mechanistic understanding relevant for the interpretation of experimental and clinical studies.

2.
Cell Chem Biol ; 30(10): 1303-1312.e3, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37506701

RESUMO

Transcription factor NF-κB potently activates anti-apoptotic genes, and its inactivation significantly reduces tumor cell survival following genotoxic stresses. We identified two structurally distinct lead compounds that selectively inhibit NF-κB activation by DNA double-strand breaks, but not by other stimuli, such as TNFα. Our compounds do not directly inhibit previously identified regulators of this pathway, most critically including IκB kinase (IKK), but inhibit signal transmission in-between ATM, PARP1, and IKKγ. Deconvolution strategies, including derivatization and in vitro testing in multi-kinase panels, yielded shared targets, cdc-like kinase (CLK) 2 and 4, as essential regulators of DNA damage-induced IKK and NF-κB activity. Both leads sensitize to DNA damaging agents by increasing p53-induced apoptosis, thereby reducing cancer cell viability. We propose that our lead compounds and derivatives can be used in context of genotoxic therapy-induced or ongoing DNA damage to increase tumor cell apoptosis, which may be beneficial in cancer treatment.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , DNA
3.
J Cachexia Sarcopenia Muscle ; 12(6): 1653-1668, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34472725

RESUMO

BACKGROUND: Septic cardiomyopathy worsens the prognosis of critically ill patients. Clinical data suggest that interleukin-1ß (IL-1ß), activated by the NLRP3 inflammasome, compromises cardiac function. Whether or not deleting Nlrp3 would prevent cardiac atrophy and improve diastolic cardiac function in sepsis was unclear. Here, we investigated the role of NLRP3/IL-1ß in sepsis-induced cardiomyopathy and cardiac atrophy. METHODS: Male Nlrp3 knockout (KO) and wild-type (WT) mice were exposed to polymicrobial sepsis by caecal ligation and puncture (CLP) surgery (KO, n = 27; WT, n = 33) to induce septic cardiomyopathy. Sham-treated mice served as controls (KO, n = 11; WT, n = 16). Heart weights and morphology, echocardiography and analyses of gene and protein expression were used to evaluate septic cardiomyopathy and cardiac atrophy. IL-1ß effects on primary and immortalized cardiomyocytes were investigated by morphological and molecular analyses. IonOptix and real-time deformability cytometry (RT-DC) analysis were used to investigate functional and mechanical effects of IL-1ß on cardiomyocytes. RESULTS: Heart morphology and echocardiography revealed preserved systolic (stroke volume: WT sham vs. WT CLP: 33.1 ± 7.2 µL vs. 24.6 ± 8.7 µL, P < 0.05; KO sham vs. KO CLP: 28.3 ± 8.1 µL vs. 29.9 ± 9.9 µL, n.s.; P < 0.05 vs. WT CLP) and diastolic (peak E wave velocity: WT sham vs. WT CLP: 750 ± 132 vs. 522 ± 200 mm/s, P < 0.001; KO sham vs. KO CLP: 709 ± 152 vs. 639 ± 165 mm/s, n.s.; P < 0.05 vs. WT CLP) cardiac function and attenuated cardiac (heart weight-tibia length ratio: WT CLP vs. WT sham: -26.6%, P < 0.05; KO CLP vs. KO sham: -3.3%, n.s.; P < 0.05 vs. WT CLP) and cardiomyocyte atrophy in KO mice during sepsis. IonOptix measurements showed that IL-1ß decreased contractility (cell shortening: IL-1ß: -15.4 ± 2.3%, P < 0.001 vs. vehicle, IL-1RA: -6.1 ± 3.3%, P < 0.05 vs. IL-1ß) and relaxation of adult rat ventricular cardiomyocytes (time-to-50% relengthening: IL-1ß: 2071 ± 225 ms, P < 0.001 vs. vehicle, IL-1RA: 564 ± 247 ms, P < 0.001 vs. IL-1ß), which was attenuated by an IL-1 receptor antagonist (IL-1RA). RT-DC analysis indicated that IL-1ß reduced cardiomyocyte size (P < 0.001) and deformation (P < 0.05). RNA sequencing showed that genes involved in NF-κB signalling, autophagy and lysosomal protein degradation were enriched in hearts of septic WT but not in septic KO mice. Western blotting and qPCR disclosed that IL-1ß activated NF-κB and its target genes, caused atrophy and decreased myosin protein in myocytes, which was accompanied by an increased autophagy gene expression. These effects were attenuated by IL-1RA. CONCLUSIONS: IL-1ß causes atrophy, impairs contractility and relaxation and decreases deformation of cardiomyocytes. Because NLRP3/IL-1ß pathway inhibition attenuates cardiac atrophy and cardiomyopathy in sepsis, it could be useful to prevent septic cardiomyopathy.


Assuntos
Cardiomiopatias , Sepse , Animais , Cardiomiopatias/etiologia , Humanos , Inflamassomos , Interleucina-1beta , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ratos , Sepse/complicações
4.
EMBO J ; 40(6): e104296, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459422

RESUMO

The IκB kinase (IKK)-NF-κB pathway is activated as part of the DNA damage response and controls both inflammation and resistance to apoptosis. How these distinct functions are achieved remained unknown. We demonstrate here that DNA double-strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, which are mechanistically and functionally distinct. RNA-sequencing reveals that the first-phase controls anti-apoptotic gene expression, while the second drives expression of senescence-associated secretory phenotype (SASP) genes. The rapidly activated first phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers proteasomal destruction of inhibitory IκBα, and is terminated through IκBα re-expression from the NFKBIA gene. The second phase, which is activated days later in senescent cells, is on the other hand independent of IKK and the proteasome. An altered phosphorylation status of NF-κB family member p65/RelA, in part mediated by GSK3ß, results in transcriptional silencing of NFKBIA and IKK-independent, constitutive activation of NF-κB in senescence. Collectively, our study reveals a novel physiological mechanism of NF-κB activation with important implications for genotoxic cancer treatment.


Assuntos
Senescência Celular/fisiologia , Quinase I-kappa B/metabolismo , Inibidor de NF-kappaB alfa/biossíntese , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/genética , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Feminino , Inativação Gênica/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/genética , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo
5.
J Cachexia Sarcopenia Muscle ; 11(1): 103-119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31441598

RESUMO

BACKGROUND: Critically ill patients frequently develop muscle atrophy and weakness in the intensive-care-unit setting [intensive care unit-acquired weakness (ICUAW)]. Sepsis, systemic inflammation, and acute-phase response are major risk factors. We reported earlier that the acute-phase protein serum amyloid A1 (SAA1) is increased and accumulates in muscle of ICUAW patients, but its relevance was unknown. Our objectives were to identify SAA1 receptors and their downstream signalling pathways in myocytes and skeletal muscle and to investigate the role of SAA1 in inflammation-induced muscle atrophy. METHODS: We performed cell-based in vitro and animal in vivo experiments. The atrophic effect of SAA1 on differentiated C2C12 myotubes was investigated by analysing gene expression, protein content, and the atrophy phenotype. We used the cecal ligation and puncture model to induce polymicrobial sepsis in wild type mice, which were treated with the IкB kinase inhibitor Bristol-Myers Squibb (BMS)-345541 or vehicle. Morphological and molecular analyses were used to investigate the phenotype of inflammation-induced muscle atrophy and the effects of BMS-345541 treatment. RESULTS: The SAA1 receptors Tlr2, Tlr4, Cd36, P2rx7, Vimp, and Scarb1 were all expressed in myocytes and skeletal muscle. Treatment of differentiated C2C12 myotubes with recombinant SAA1 caused myotube atrophy and increased interleukin 6 (Il6) gene expression. These effects were mediated by Toll-like receptors (TLR) 2 and 4. SAA1 increased the phosphorylation and activity of the transcription factor nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) p65 via TLR2 and TLR4 leading to an increased binding of NF-κB to NF-κB response elements in the promoter region of its target genes resulting in an increased expression of NF-κB target genes. In polymicrobial sepsis, skeletal muscle mass, tissue morphology, gene expression, and protein content were associated with the atrophy response. Inhibition of NF-κB signalling by BMS-345541 increased survival (28.6% vs. 91.7%, P < 0.01). BMS-345541 diminished inflammation-induced atrophy as shown by a reduced weight loss of the gastrocnemius/plantaris (vehicle: -21.2% and BMS-345541: -10.4%; P < 0.05), tibialis anterior (vehicle: -22.7% and BMS-345541: -17.1%; P < 0.05) and soleus (vehicle: -21.1% and BMS-345541: -11.3%; P < 0.05) in septic mice. Analysis of the fiber type specific myocyte cross-sectional area showed that BMS-345541 reduced inflammation-induced atrophy of slow/type I and fast/type II myofibers compared with vehicle-treated septic mice. BMS-345541 reversed the inflammation-induced atrophy program as indicated by a reduced expression of the atrogenes Trim63/MuRF1, Fbxo32/Atrogin1, and Fbxo30/MuSA1. CONCLUSIONS: SAA1 activates the TLR2/TLR4//NF-κB p65 signalling pathway to cause myocyte atrophy. Systemic inhibition of the NF-κB pathway reduced muscle atrophy and increased survival of septic mice. The SAA1/TLR2/TLR4//NF-κB p65 atrophy pathway could have utility in combatting ICUAW.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Proteína Amiloide A Sérica/metabolismo , Receptores Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
6.
Cell Mol Life Sci ; 69(17): 2919-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22446748

RESUMO

A disintegrin and metalloproteinase10 (ADAM10) has been implicated as a major sheddase responsible for the ectodomain shedding of a number of important surface molecules including the amyloid precursor protein and cadherins. Despite a well-documented role of ADAM10 in health and disease, little is known about the regulation of this protease. To address this issue we conducted a split-ubiquitin yeast two-hybrid screen to identify membrane proteins that interact with ADAM10. The yeast experiments and co-immunoprecipitation studies in mammalian cell lines revealed tetraspanin15 (TSPAN15) to specifically associate with ADAM10. Overexpression of TSPAN15 or RNAi-mediated knockdown of TSPAN15 led to significant changes in the maturation process and surface expression of ADAM10. Expression of an endoplasmic reticulum (ER) retention mutant of TSPAN15 demonstrated an interaction with ADAM10 already in the ER. Pulse-chase experiments confirmed that TSPAN15 accelerates the ER-exit of the ADAM10-TSPAN15 complex and stabilizes the active form of ADAM10 at the cell surface. Importantly, TSPAN15 also showed the ability to mediate the regulation of ADAM10 protease activity exemplified by an increased shedding of N-cadherin and the amyloid precursor protein. In conclusion, our data show that TSPAN15 is a central modulator of ADAM10-mediated ectodomain shedding. Therapeutic manipulation of its expression levels may be an additional approach to specifically regulate the activity of the amyloid precursor protein alpha-secretase ADAM10.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Caderinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Tetraspaninas/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Western Blotting , Caderinas/genética , Movimento Celular , Células Cultivadas , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Proteínas de Membrana/genética , Camundongos , Transporte Proteico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tetraspaninas/antagonistas & inibidores , Tetraspaninas/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...